BUT System for The Third DIHARD Speech Diarization Challenge

Federico Landini¹, Alicia Lozano-Diez¹, Lukáš Burget¹, Mireia Diez¹, Anna Silnova¹, Kateřina Žmolíková¹, Ondrěj Glembek¹, Pavel Matějka¹, Themos Stafylakis², Niko Brümmer²

¹Brno University of Technology, Faculty of Information Technology Brno - Czechia ²Omilia - Conversational Intelligence, Greece

{landini, lozano, mireia}@fit.vutbr.cz

January 23, 2021

System Overview

VBx heavy-tailed PLDA

- TDNN-based x-vectors clustered with AHC (initialization)
- Bayesian HMM that infers number of speakers, speaker models and assignment of x-vectors to speakers (VBx)
- Core of the winning system of DIHARD II¹
- But state distributions derived from a heavy-tailed PLDA model instead of a Gaussian one

https://github.com/BUTSpeechFIT/VBx/tree/v1.0_DIHARDII

¹Landini et al., BUT System for the Second DIHARD Speech Diarization Challenge

VBx adapted PLDA

- Core of BUT system for VoxConverse 2020²
- But the PLDA model is an interpolation of
 - a PLDA trained on speakers from VoxCeleb
 - a PLDA trained on speakers from DIHARD 2020 dev set

²Landini et al., Analysis of the BUT Diarization System for VoxConverse Challenge

Spectral Clustering

- ResNet152-based x-vectors clustered by means of spectral clustering + k-means
 - Affinity matrix based on cosine similarity
 - Only n largest elements are kept in each column/row of the affinity matrix
 - Number of speakers decided based on the largest eigen-gap

End-to-end Diarization

- Recordings downsampled to 8 kHz
- System based on self-attention and encoder-decoder LSTM-based attractors ³
- Model trained on artificially created telephone conversations and fine-tuned to CALLHOME conversations

³Horiguchi et al., End-to-End Speaker Diarization for an Unknown Number of Speakers with Encoder-Decoder Based Attractors

End-to-end Diarization

- Recordings downsampled to 8 kHz
- System based on self-attention and encoder-decoder LSTM-based attractors $^{\rm 3}$
- Model trained on artificially created telephone conversations and fine-tuned to CALLHOME conversations
- By setting a threshold on the outputs, it is possible to predict silence and overlapped speech

³Horiguchi et al., End-to-End Speaker Diarization for an Unknown Number of Speakers with Encoder-Decoder Based Attractors

End-to-end Diarization

- Recordings downsampled to 8 kHz
- System based on self-attention and encoder-decoder LSTM-based attractors $^{\rm 3}$
- Model trained on artificially created telephone conversations and fine-tuned to CALLHOME conversations
- By setting a threshold on the outputs, it is possible to predict silence and overlapped speech
 - Use oracle VAD for post-processing
 - Output always the most likely speaker
 - Tune threshold to find overlap (two or more speakers)

³Horiguchi et al., End-to-End Speaker Diarization for an Unknown Number of Speakers with Encoder-Decoder Based Attractors

System Fusion

- The outputs of the four systems were fused using DOVERIap⁴
 - Speaker labels from different systems are globally mapped
 - Fusion labels are obtained with weighted majority voting
 - The voting scheme can handle overlapping labels

 $^{{}^{4}\}text{Raj}$ et al., DOVER-Lap: A Method for Combining Overlap-aware Diarization Outputs

System Fusion

- The outputs of the four systems were fused using DOVERIap⁴
 - Speaker labels from different systems are globally mapped
 - Fusion labels are obtained with weighted majority voting
 - The voting scheme can handle overlapping labels
- However, only one of the systems accounts for overlapped speech

 $^{^{4}\}mbox{Raj}$ et al., DOVER-Lap: A Method for Combining Overlap-aware Diarization Outputs

Overlapped Speech Handling

- Second speaker obtained using an heuristic: closest in time
- OVD uses the encoder and separator of Conv-TasNet⁵
- It was trained on DIHARD III dev set, VoxConverse dev set and three meeting datasets: ICSI, ISL and AMI train set
- Both real data and artificial overlaps were used for training

 $^{^{5}\}mbox{Luo}$ et al., Conv-tasnet: Surpassing ideal time-frequency magnitude masking for speech separation

Telephone Channel Detector

- Analyzing the average energy levels in spectrogram, utterances are classified as telephone or wide-band
- Telephone utterances are processed with the E2E system
- Other utterances are processed with the fusion+overlap

	Development									Evaluation	
System		Cc		Full				Core	Full		
,	DER	Miss	FA	SER	DER	Miss	FA	SER	DER	DER	
VBx HTPLDA	16.33	10.95	0	5.38	15.98	10.93	0	5.05	16.54	15.5	
VBx adapted PLDA	16.66	10.95	0	5.72	16.26	10.93	0	5.33	16.67	15.74	
SC	16.63	10.95	0	5.69	16.51	10.93	0	5.58	16.56	15.79	
E2E	24.17	8.89	1.69	13.59	20.59	7.82	1.88	10.89	23.51	19.06	

		Development								
System		Co	ore			Fu	IIL		Core	Full
	DER	Miss	FA	SER	DER	Miss	FA	SER	DER	DER
VBx HTPLDA	16.33	10.95	0	5.38	15.98	10.93	0	5.05	16.54	15.5
VBx adapted PLDA	16.66	10.95	0	5.72	16.26	10.93	0	5.33	16.67	15.74
SC	16.63	10.95	0	5.69	16.51	10.93	0	5.58	16.56	15.79
E2E	24.17	8.89	1.69	13.59	20.59	7.82	1.88	10.89	23.51	19.06
DOVERIap	15.86	10.94	0.01	4.92	15.57	10.92	0	4.65	16.22	15.26

		Development								
System		Cc	ore		Í	Fu	IIL		Core	Full
	DER	Miss	FA	SER	DER	Miss	FA	SER	DER	DER
VBx HTPLDA	16.33	10.95	0	5.38	15.98	10.93	0	5.05	16.54	15.5
VBx adapted PLDA	16.66	10.95	0	5.72	16.26	10.93	0	5.33	16.67	15.74
SC	16.63	10.95	0	5.69	16.51	10.93	0	5.58	16.56	15.79
E2E	24.17	8.89	1.69	13.59	20.59	7.82	1.88	10.89	23.51	19.06
DOVERIap	15.86	10.94	0.01	4.92	15.57	10.92	0	4.65	16.22	15.26
+ ov. nandling	15.03	9.70	0.09	5.18	14.30	9.38	U.11	4.82	10.07	14.25

				Develo	pment				Evalue	ation
System		Co	ore		Í	Fu	III		Core	Full
	DER	Miss	FA	SER	DER	Miss	FA	SER	DER	DER
VBx HTPLDA	16.33	10.95	0	5.38	15.98	10.93	0	5.05	16.54	15.5
VBx adapted PLDA	16.66	10.95	0	5.72	16.26	10.93	0	5.33	16.67	15.74
SC	16.63	10.95	0	5.69	16.51	10.93	0	5.58	16.56	15.79
E2E	24.17	8.89	1.69	13.59	20.59	7.82	1.88	10.89	23.51	19.06
DOVERIap	15.86	10.94	0.01	4.92	15.57	10.92	0	4.65	16.22	15.26
+ ov. handling	15.03	9.76	0.09	5.18	14.30	9.38	0.11	4.82	16.07	14.25
Final fusion	14.56	9.37	0.27	4.91	13.49	8.17	0.82	4.49	15.46	13.29

Track 1

				Develo	pment				Evalue	ation
System		Cc	ore		ĺ	Fu	ll		Core	Full
	DER	Miss	FA	SER	DER	Miss	FA	SER	DER	DER
VBx HTPLDA	16.33	10.95	0	5.38	15.98	10.93	0	5.05	16.54	15.5
VBx adapted PLDA	16.66	10.95	0	5.72	16.26	10.93	0	5.33	16.67	15.74
SC	16.63	10.95	0	5.69	16.51	10.93	0	5.58	16.56	15.79
E2E	24.17	8.89	1.69	13.59	20.59	7.82	1.88	10.89	23.51	19.06
DOVERIap	15.86	10.94	0.01	4.92	15.57	10.92	0	4.65	16.22	15.26
+ ov. handling	15.03	9.76	0.09	5.18	14.30	9.38	0.11	4.82	16.07	14.25
Final fusion	14.56	9.37	0.27	4.91	13.49	8.17	0.82	4.49	15.46	13.29

 Our VBx system for DIHARD II⁶ obtains 16.89% DER on development core and 16.46% DER on development full

⁶https://github.com/BUTSpeechFIT/VBx/tree/v1.0_DIHARDII

System	ALL	audiobooks	broadcast	clinical	court	cts
VBx HTPLDA	16.33	2	2.41	10.04	2.9	16.52
VBx adapted PLDA	16.66	3.83	2.11	10.32	2.73	17.24
SC	16.63	0.38	3.13	11.2	3.5	16.7
E2E	24.17	0.56	14.42	21.62	25.31	9.29
DOVERIap	15.86	0	2.42	9.43	3.01	16.29
+ ov. handling	15.03	0	2.32	9.17	2.77	13.78
Final fusion	14.56	0	2.32	9.17	2.77	9.29

System	maptask	meeting	restaurant	soc. field	soc. lab	webvideo
VBx HTPLDA	4.89	26.52	39.89	12.82	8.13	35.12
VBx adapted PLDA		26.13	40.54	13.36	7.88	36.36
SC	6.09	26.87	38.93	13.77	8.33	36.32
E2E	16.97	39.02	53.96	18.86	7.18	40.36
DOVERIap	4.63	25.94	39.59	12.28	6.99	35.45
+ ov. handling	3.36	24.59	39.16	11.95	6.33	34.33
Final fusion	3.36	24.59	39.16	11.95	6.33	34.33

System	ALL	audiobooks	broadcast	clinical	court	cts
VBx HTPLDA	16.33	2	2.41	10.04	2.9	16.52
VBx adapted PLDA	16.66	3.83	2.11	10.32	2.73	17.24
SC	16.63	0.38	3.13	11.2	3.5	16.7
E2E	24.17	0.56	14.42	21.62	25.31	9.29
DOVERIap	15.86	0	2.42	9.43	3.01	16.29
+ ov. handling	15.03	0	2.32	9.17	2.77	13.78
Final fusion	14.56	0	2.32	9.17	2.77	9.29

System	maptask	meeting	restaurant	soc. field	soc. lab	webvideo
VBx HTPLDA	4.89	26.52	39.89	12.82	8.13	35.12
VBx adapted PLDA		26.13	40.54	13.36	7.88	36.36
SC	6.09	26.87	38.93	13.77	8.33	36.32
E2E	16.97	39.02	53.96	18.86	7.18	40.36
DOVERIap	4.63	25.94	39.59	12.28	6.99	35.45
+ ov. handling	3.36	24.59	39.16	11.95	6.33	34.33
Final fusion	3.36	24.59	39.16	11.95	6.33	34.33

Baseline VAD instead of oracle labels

Baseline VAD instead of oracle labels

				Develo	pment				Evalua	ation
System	Core				ĺ	Fu	III		Core	Full
	DER	Miss	FA	SER	DER	Miss	FA	SER	DER	DER
VBx adapted PLDA	19.49	12.6	0.91	5.98	19.14	12.59	0.96	5.58		
SC	19.58	12.61	0.91	6.06	19.52	12.6	0.96	5.95		
E2E	26.14	10.41	2.49	13.24	22.68	9.39	2.76	10.54		
DOVERlap	19.07	12.57	0.91	5.59	18.74	12.54	0.97	5.23		
+ ov. handling	17.89	10.32	1.35	6.22	16.89	9.84	1.4	5.65		
Final fusion	17.52	10.09	1.51	5.91	16.32	9.17	2.02	5.12	24.62	21.09
Final fusion Track 1	14.56	9.37	0.27	4.91	13.49	8.17	0.82	4.49	15.46	13.29

- Dealing with overlap using standard approaches is still challenging
- End-to-end approaches naturally model that aspect
- However, they still fall behind in overall performance against oracle VAD + standard approaches